Deep Generative Models

7. Normalizing Flow Models

• 국가수리과학연구소 산업수학혁신센터 김민중

Latent Variable Models: Assumption

- Observable variables $x \in \mathbb{R}^d$
- Latent variables $z \in \mathbb{R}^h$ (unobservable)

$$p_{data}(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$$

or
$$= \int p(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

Example: Mixture of Gaussians

- Mixture of Gaussians. Bayes net: $z \rightarrow x$
 - $z = Categorical(z|\gamma_1, \cdots, \gamma_K)$
 - $p(\boldsymbol{x}|\boldsymbol{z}=\boldsymbol{k}) = N(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$

• Clustering: The posterior p(z|x) identifies the mixture component

Example: Variational Autoencoder

- A Mixture of an infinite number of Gaussians
 - $\boldsymbol{z} = N(\boldsymbol{z}|\boldsymbol{0}, \boldsymbol{I}), \, \boldsymbol{z} \in \mathbb{R}^h$
 - $p(\mathbf{x}|\mathbf{z}) = N(\mathbf{x}|\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks
 - Even though $p(\mathbf{x}|\mathbf{z})$ is simple, the marginal $p(\mathbf{x})$ is very complex/flexible
- Hope that after training, z will correspond to meaningful latent factors of variation (features)
- Unsupervised representation learning
- Features can be computed via $p(\mathbf{z}|\mathbf{x})$

The Evidence Lower bound

$$\log p_{\theta}(\mathbf{x})$$

$$= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - D\left(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p(\mathbf{z})\right)$$

$$+ D\left(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x})\right)$$

og-likeliho

log $p_{\theta}(x)$ ELBO $KL(q_{\phi}(z), p_{\theta}(z|x))$

φ

- holds for $\forall q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$, distribution of \boldsymbol{z} parameterized by ϕ and dependent on \boldsymbol{x} . E.g., $q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) = N\left(\boldsymbol{z} \middle| \boldsymbol{\mu}_{\phi}(\boldsymbol{x}), \operatorname{diag}\left(\boldsymbol{\sigma}_{\phi}^{2}(\boldsymbol{x})\right)\right)$
- We want to jointly optimize over θ and ϕ to maximize the ELBO over a dataset D

Variational Inference

• Variational inference requires that intractable posterior distributions be approximated by a class of known prob. dist.

 $E_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - D\left(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) \parallel p(\boldsymbol{z})\right)$

- We need to choose the computationally-feasible approximate posterior distribution $q_{\phi}(\mathbf{z}|\mathbf{x})$
- We need efficient computation of

 $\nabla_{\boldsymbol{\phi}} E_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})]$

Stochastic backpropagation

Reparametrization

$$z = N(z|\mu, \operatorname{diag}(\sigma^2)) \Leftrightarrow z = \mu + \operatorname{diag}(\sigma^2)\epsilon, \quad \epsilon \sim N(0, I)$$

Backpropagation with Monte Carlo

 $\nabla_{\phi} E_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[f_{\theta}(\boldsymbol{z})] \Leftrightarrow E_{\boldsymbol{\epsilon} \sim N(\boldsymbol{\epsilon}|\boldsymbol{0},\boldsymbol{I})}[\nabla_{\phi} f_{\theta}(\boldsymbol{\mu}_{\phi} + \operatorname{diag}(\boldsymbol{\sigma}_{\phi}^{2})\boldsymbol{\epsilon})]$

Amortized Variational Inference

- Inference network: model that learns an inverse map(encoder) from observations to latent variables
- Using this, we can compute a set of global variational parameters ϕ valid for infrence at both training and test time
- The simplest inference models: diagonal Gaussian densities

$$q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) = N\left(\boldsymbol{z}|\boldsymbol{\mu}_{\phi}(\boldsymbol{x}), \operatorname{diag}\left(\boldsymbol{\sigma}_{\phi}^{2}(\boldsymbol{x})\right)\right)$$

VAE: Autoencoder perspective

 $\mathcal{L}(\boldsymbol{x};\theta,\phi) = E_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - D\left(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) \parallel p(\boldsymbol{z})\right) \quad (\text{ELBO})$

- 1. Take a data point x', map it to sample $\hat{z} \sim q_{\phi}(z|x')$ (encoder)
 - Sample \hat{z} from $q_{\phi}(z|x') = N(z|\mu_{\phi}(x'), \text{diag}(\sigma_{\phi}^2(x')))$, (encoder)
- 2. Reconstruct \hat{x} by sampling from $p_{\theta}(x|\hat{z})$ (decoder or generator)
 - $\widehat{x} = G_{\theta}(\widehat{z})$
 - The training objective $\mathcal{L}(\mathbf{x}; \theta, \phi)$
 - Reconstruction error
 - Regularizer

The VAE training algorithm

- Sample minibatch of *n* training points $x^{(1)}, x^{(2)}, \dots, x^{(n)}$ from p_{data}
- Obtain *n* prob. distributions $q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})$ using inference network
- Sample *n* latent feature points $z^{(1)}, z^{(2)}, \dots, z^{(n)}$ from $q_{\phi}(z|x^{(i)})$ resp.
- Update the generator parameters ϕ , θ by stochastic gradient descent

$$\nabla_{\boldsymbol{\phi}} \ell(\boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{1}{n} \nabla_{\boldsymbol{\phi}} \sum_{i=1}^{n} \left[\left\| \boldsymbol{x}^{(i)} - G_{\boldsymbol{\theta}} \left(\boldsymbol{z}^{(i)} \right) \right\|_{2}^{2} - D \left(q_{\boldsymbol{\phi}} \left(\boldsymbol{z} | \boldsymbol{x}^{(i)} \right) \| p(\boldsymbol{z}) \right) \right]$$
$$\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}, \boldsymbol{\phi}) = \frac{1}{n} \nabla_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left[\left\| \boldsymbol{x}^{(i)} - G_{\boldsymbol{\theta}} \left(\boldsymbol{z}^{(i)} \right) \right\|_{2}^{2} \right]$$

• Repeat for fixed number of epochs

Summary of Latent Variable Models

- Combine simple models to get a more flexible one (e.g., mixture of Gaussians)
- Directed model permits ancestral sampling (efficient generation): $z \sim p(z), x \sim p_{\theta}(x|z)$
- However, log-likelihood is generally intractable. I.e., learning is difficult
- Joint learning of a model (θ) and an amortized inference component (ϕ) to achieve tractability via ELBO optimization
- Latent representations for any x can be inferred via $q_{\phi}(z|x)$

Recap of likelihood-based learning

- Model families:
 - Autoregressive models: $p_{\theta}(\mathbf{x}) = \prod_{i=1}^{d} p_{\theta}(x_i | \mathbf{x}_{< i})$
 - Latent variable model: $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$
- Autoregressive models provide tractable likelihoods but no direct mechanism for learning features
- Variational autoencoders can learn feature representations (via latent variables $q_{\phi}(\mathbf{z}|\mathbf{x})$) but have intractable marginal likelihoods
- Key question: Can we design a latent variable model with tractable likelihoods?

Normalizing flow models

- Consider a directed, latent variable model over observed variables *X* and latent variables *Z*
- In a normalizing flow model, the mapping between Z and X, given by $f_{\theta} \colon \mathbb{R}^d \to \mathbb{R}^d$, is deterministic and invertible such that $X = f_{\theta}(Z)$ and $Z = f_{\theta}^{-1}(X)$

Continuous random variables (recall)

- If X is a continuous random variable, we can usually represent it using its probability density function $p_X: \mathbb{R} \to \mathbb{R}^+$
- However, we cannot represent this function as a table anymore
- Typically consider parameterized densities:

• Gaussian:
$$X = N(X|\mu, \sigma)$$
 if $p_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$

• Uniform:
$$X = U(X|a, b)$$
 if $p_X(x) = \frac{1}{b-a} \mathbb{1}_{[a \le x \le b]}$

• If *X* is a continuous random vector, we can usually represent it using its joint probability density function:

• Gaussian:
$$p_X(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

Change of variables formula

- Change of variables(1D case)
 - If X = f(Z) and $f(\cdot)$ is monotone with inverse $Z = f^{-1}(X)$, then

$$p_X(x) = p_Z(f^{-1}(x))|(f^{-1})'(x)|$$

• Note that the "shape" of $p_X(x)$ is different (more complex) from that of the prior $p_Z(z)$

Change of variables formula

- Change of variables(1D case):
 - If X = f(Z) and $f(\cdot)$ is monotone with inverse $Z = f^{-1}(X)$, then

$$p_X(x) = p_Z(f^{-1}(x))|(f^{-1})'(x)|$$

Proof sketch: Assume f(·) is monotonically increasing
F_X(x) = p[X ≤ x] = p[f(Z) ≤ x] = p[Z ≤ f⁻¹(x)] = F_Z(f⁻¹(x))
Taking derivatives on both sides:

$$p_X(x) = \frac{dF_X(x)}{dx} = \frac{dF_Z(f^{-1}(x))}{dx} = p_Z(f^{-1}(x))(f^{-1})'(x)$$

- Recall from basic calculus that $[f^{-1}]'(x) = \frac{1}{f'(f^{-1}(x))}$
- So, letting $z = f^{-1}(x)$ we can also write

$$p_X(x) = p_Z(z) \left| \frac{1}{f'(z)} \right|$$

Geometry: Determinants and volumes

- Let Z be a uniform random vector in $[0,1]^d$
- Let X = AZ for a square invertible matrix A, with inverse A^{-1} . How is X distributed?
- Geometrically, the matrix A maps the unit hypercube $[0,1]^d$ to a parallelotope
- Hypercube and parallelotope are generalizations of square/cube and parallelogram/parallelopiped to higher dimensions

• The matrix $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ maps a unit square to a parallelogram

Geometry: Determinants and volumes

• The volume of the parallelotope is equal to the absolute value of the determinant of the matrix *A*

$$\det(A) = \det\begin{pmatrix} a & c \\ b & d \end{pmatrix} = ad - bc$$

(a+c)(b+d) - ab - 2bc - cd = ad - bc

- Let X = AZ for a square invertible matrix A, with inverse A^{-1}
- X is uniformly distributed over the parallelotope of area |det(A)|
- Hence, we have

 $p_X(\mathbf{x}) = p_Z(A^{-1}\mathbf{x})/|\det(A)| = p_Z(\mathbf{z})|\det(A^{-1})|$

Note similarity with 1D case formula

Generalized change of variables

- For linear transformations specified via *A*, change in volume is given by the determinant of *A*
- For non-linear transformations $f(\cdot)$, the linearized change in volume is given by the determinant of the Jacobian of $f(\cdot)$
- Change of variables (General case): The mapping between Z and X, given by $f: \mathbb{R}^d \to \mathbb{R}^d$, is invertible such that X = f(Z) and

$$Z = f^{-1}(X)$$

$$p_X(\mathbf{x}) = p_Z(\mathbf{f}^{-1}(\mathbf{x})) \left| \det\left(\frac{\partial \mathbf{f}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right) \right| = p_Z(\mathbf{z}) \left| \det\left(\frac{\partial \mathbf{f}(\mathbf{z})}{\partial \mathbf{z}}\right) \right|^{-1}$$

- Generalizes the 1D case $p_X(x) = p_Z(f^{-1}(x))|(f^{-1})'(x)|$
- Unlike VAEs, x, z need to be continuous and have the same dimension

Two-Dimensional Example

- Let $Z = (Z_1, Z_2)^T$ be continuous random vector with joint density p_7
- Let $u: \mathbb{R}^2 \to \mathbb{R}^2$ be an invertible transformation denoted u = (u_1, u_2) and let $v = (v_1, v_2)$ be its inverse transformation
- Let $X_1 = u_1(Z_1, Z_2)$ and $X_2 = u_2(Z_1, Z_2)$
- Then, $Z_1 = v_1(X_1, X_2)$ and $Z_2 = v_2(X_1, X_2)$

 ∂Z_1

$$p_{X}(x_{1}, x_{2}) = p_{Z}(v_{1}(x_{1}, x_{2}), v_{2}(x_{1}, x_{2})) \left| \det \begin{pmatrix} \frac{\partial v_{1}(x_{1}, x_{2})}{\partial x_{1}} & \frac{\partial v_{1}(x_{1}, x_{2})}{\partial x_{2}} \\ \frac{\partial v_{2}(x_{1}, x_{2})}{\partial x_{1}} & \frac{\partial v_{2}(x_{1}, x_{2})}{\partial x_{2}} \end{pmatrix} \right|^{-1} \\ = p_{Z}(z_{1}, z_{2}) \left| \det \begin{pmatrix} \frac{\partial u_{1}(z_{1}, z_{2})}{\partial z_{1}} & \frac{\partial u_{1}(z_{1}, z_{2})}{\partial z_{2}} \\ \frac{\partial u_{2}(z_{1}, z_{2})}{\partial z_{2}} & \frac{\partial u_{2}(z_{1}, z_{2})}{\partial z_{2}} \end{pmatrix} \right|^{-1}$$

Deep Generative Models | mjgim@nims.re.kr |

 ∂Z_2

NIMS & AJOU University

Normalizing flow models

- Consider a directed, latent variable model over observed variables *X* and latent variables *Z*
- In a normalizing flow model, the mapping between Z and X, given by $f_{\theta} \colon \mathbb{R}^d \to \mathbb{R}^d$, is deterministic and invertible such that $X = f_{\theta}(Z)$ and $Z = f_{\theta}^{-1}(X)$

Normalizing flow models

• Using change of variables, the marginal likelihood is given by

$$p_X(\boldsymbol{x};\boldsymbol{\theta}) = p_Z\left(\boldsymbol{f}_{\boldsymbol{\theta}}^{-1}(\boldsymbol{x})\right) \left| \det\left(\frac{\partial \boldsymbol{f}_{\boldsymbol{\theta}}^{-1}(\boldsymbol{x})}{\partial \boldsymbol{x}}\right) \right| = p_Z(\boldsymbol{z}) \left| \det\left(\frac{\partial \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{z})}{\partial \boldsymbol{z}}\right) \right|^{-1}$$

• Note: *x*, *z* need to be continuous and have the same dimension

Normalizing Flows

- A normalizing flow describes the transformation of a probability density through a sequence of invertible mappings
- By repeatedly applying the rule for change of variables, the initial density 'flows' through the sequence of invertible mappings
- Flexible, arbitrarily complex and scalable

A Flow of Transformations

- **Normalizing**: Change of variables gives a normalized density after applying an invertible transformation
- Flow: Invertible transformations can be composed with each other

$$\boldsymbol{f}_{\theta}(\boldsymbol{z}_0) \coloneqq \boldsymbol{f}_K \circ \boldsymbol{f}_{K-1} \circ \cdots \circ \boldsymbol{f}_1(\boldsymbol{z}_0) = \boldsymbol{z}_K$$

A Flow of Transformations

- Start with a simple distribution for z_0 (e.g., Gaussian)
- Apply a sequence of *K* invertible transformations to finally obtain $\mathbf{x} = \mathbf{z}_K$ $\mathbf{f}_{\theta}^{-1}(\mathbf{x}) = \mathbf{f}_1^{-1} \circ \mathbf{f}_2^{-1} \circ \cdots \circ \mathbf{f}_K^{-1}(\mathbf{x})$

A Flow of Transformations

$$f_{\theta}(z_0) \coloneqq f_K \circ f_{K-1} \circ \cdots \circ f_1(z_0) = z_K = x$$

$$f_{\theta}^{-1}(x) = f_1^{-1} \circ f_2^{-1} \circ \cdots \circ f_K^{-1}(x)$$

• The marginal likelihood $p_X(\mathbf{x})$ is given by

$$p_X(\mathbf{x};\theta) = p_Z\left(f_{\theta}^{-1}(\mathbf{x})\right) \left| \det\left(\frac{\partial f_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right) \right|$$
$$= p_Z(\mathbf{z}) \left| \det\left(\frac{\partial f_{\theta}(\mathbf{z})}{\partial \mathbf{z}}\right) \right|^{-1}$$
$$= p_Z\left(f_{\theta}^{-1}(\mathbf{x})\right) \prod_{k=1}^{K} \left| \det\left(\frac{\partial f_k^{-1}(\mathbf{x}_k)}{\partial \mathbf{x}_k}\right) \right|$$

Learning and Inference

• Learning via maximum likelihood over the dataset *D*

$$\max_{\theta} \log p_X(D;\theta) = \sum_{\boldsymbol{x} \in D} \log p_Z\left(\boldsymbol{f}_{\theta}^{-1}(\boldsymbol{x})\right) + \log \left| \det\left(\frac{\partial \boldsymbol{f}_{\theta}^{-1}(\boldsymbol{x})}{\partial \boldsymbol{x}}\right) \right|$$

- Exact likelihood evaluation via inverse transformation $x \mapsto z$ and change of variables formula
- Sampling via forward transformation $z \mapsto x$

$$z \sim p_Z(z), x = f_\theta(z)$$

• Latent representations inferred via inverse transformation (no inference network required): $z = f_{\theta}^{-1}(x)$

- Effect of normalizing flow on two distributions
- 10 planar transformations can transform simple distributions into a more complex one

• Planar flow

$$\boldsymbol{f}(\boldsymbol{z}) = \boldsymbol{z} + \boldsymbol{u}h(\boldsymbol{w}^T\boldsymbol{z} + b)$$

- parametrized by $\theta = (w, u, b)$ where $h(\cdot)$ is a nonlinear function
- Absolute value of the determinant of the Jacobian is given by

$$\left| \det\left(\frac{\partial \boldsymbol{f}(\boldsymbol{z})}{\partial \boldsymbol{z}}\right) \right| = \left| \det(\boldsymbol{I} + \boldsymbol{h}'(\boldsymbol{w}^T \boldsymbol{z} + \boldsymbol{b})\boldsymbol{u}\boldsymbol{w}^T) \right|$$
$$= \left| 1 + \boldsymbol{h}'(\boldsymbol{w}^T \boldsymbol{z} + \boldsymbol{b})\boldsymbol{u}^T \boldsymbol{w} \right| \quad (\text{matrix determinant lemma})$$

- Need to restrict parameters and non-linearity for the mapping to be invertible.
 - For example, $h = \tanh(\cdot)$ and $h'(\mathbf{w}^T \mathbf{z} + b)\mathbf{u}^T \mathbf{w} \ge -1$

• A family of transformations of Planar flows

$$\boldsymbol{f}_k(\boldsymbol{z}) = \boldsymbol{z} + \boldsymbol{u}_k h \big(\boldsymbol{w}_k^T \boldsymbol{z} + \boldsymbol{b}_k \big)$$

- parametrized by (w_k, u_k, b_k) where $h(\cdot)$ is a nonlinear function
- Let *f*_θ(*z*₀) ≔ *f*_K ∘ … *f*₂ ∘ *f*₁(*z*₀) = *z*_K = *x*The log-likelihood *p*_X(*x*; θ) is given by

$$\log p_X(\boldsymbol{x};\theta) = \log p_Z(\boldsymbol{z}) - \sum_{k=1}^K \log |1 + h' (\boldsymbol{w}_k^T \boldsymbol{z}_{k-1} + b) \boldsymbol{u}_k^T \boldsymbol{w}_k|$$

Approximating four non-Gaussian 2D distributions

(d) Comparison of KL-divergences.

Desiderata for flow models

- Simple prior $p_Z(z)$ that allows for efficient sampling and tractable likelihood evaluation. E.g., isotropic Gaussian
- Invertible transformations with tractable evaluation:
 - Likelihood evaluation requires efficient evaluation of $x \mapsto z$ mapping
 - Sampling requires efficient evaluation of $z \mapsto x$ mapping

Desiderata for flow models

- Computing likelihoods also requires the evaluation of determinants $d \times d$ of Jacobian matrices
- Computing the determinant for a $d \times d$ matrix is $O(d^3)$
 - Key idea: Choose transformations so that the resulting Jacobian matrix has special structure
 - For example, the determinant of a triangular matrix is the product of the diagonal entries, i.e., an O(d) operation

Triangular Jacobian

$$\boldsymbol{x} = (x_1, x_2, \cdots, x_d)^T = \boldsymbol{f}(\boldsymbol{z}) = \left(f_1(\boldsymbol{z}), f_2(\boldsymbol{z}), \cdots, f_d(\boldsymbol{z})\right)^T$$
$$\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{z}} = \begin{pmatrix} \frac{\partial f_1}{\partial z_1} & \cdots & \frac{\partial f_1}{\partial z_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_d}{\partial z_1} & \cdots & \frac{\partial f_d}{\partial z_d} \end{pmatrix}$$
If $x_i = f_i(\boldsymbol{z})$ only depends on $\boldsymbol{z}_{\leq i}$, then
$$\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{z}} = \begin{pmatrix} \frac{\partial f_1}{\partial z_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ \frac{\partial f_d}{\partial z_1} & \cdots & \frac{\partial f_d}{\partial z_d} \end{pmatrix}$$

• has lower triangular structure

Recap of normalizing flow models

- Transform simple to complex distributions via sequence of invertible transformations
- Directed latent variable models with marginal likelihood given by the change of variables formula
- Triangular Jacobian permits efficient evaluation of log-likelihood
- Examples
 - Invertible transformations with diagonal Jacobians (NICE, Real-NVP)
 - Autoregressive Models as Normalizing Flow Models
 - Invertible CNNs (MintNet)
 - Gaussianization flows

Designing invertible transformations

- Nonlinear Independent Components Estimation (Dinh et al., 2014) composes two kinds of invertible transformations: additive coupling layers and rescaling layers
- Real-NVP (Dinh et al., 2017)
- Inverse Autoregressive Flow (Kingma et al., 2016)
- Masked Autoregressive Flow (Papamakarios et al., 2017)
- I-resnet (Behrmann et al, 2018)
- Glow (Kingma et al, 2018)
- MintNet (Song et al., 2019)
- • •

NICE - Additive coupling layers

- Partition the variables z into two disjoint subsets, say $z_{\leq h}$ and $z_{>h}$ for any $1 \leq h < d$
- Forward mapping $z \mapsto x$:
 - $x_{\leq h} = z_{\leq h}$ (identity transformation)
 - $x_{>h} = z_{>h} + m_{\theta}(z_{\leq h})$ $(m_{\theta}(\cdot)$ is a neural network with parameters θ , h input units, and d h output units)
- Inverse mapping $x \mapsto z$:
 - $\mathbf{z}_{\leq h} = \mathbf{x}_{\leq h}$ (identity transformation)
 - $\mathbf{z}_{>h} = \mathbf{x}_{>h} m_{\theta}(\mathbf{x}_{\leq h})$

NICE - Additive coupling layers

• Jacobian of forward mapping:

$$\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{z}} = \begin{pmatrix} I_h & \boldsymbol{0} \\ \frac{\partial \boldsymbol{x}_{>h}}{\partial \boldsymbol{z}_{\le h}} & I_{d-h} \end{pmatrix}$$
$$\det\left(\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{z}}\right) = 1$$

• Volume preserving transformation since determinant is 1

NICE - Rescaling layers

- Additive coupling layers are composed together (with arbitrary partitions of variables in each layer)
- Final layer of NICE applies a rescaling transformation
- Forward mapping $z \mapsto x$:

 $x_i = s_i z_i$

- where $s_i > 0$ is the scaling factor for the ith dimension
- Inverse mapping $x \mapsto z$:

$$z_i = \frac{x_i}{s_i}$$

• Jacobian of forward mapping

 $\operatorname{diag}(s_1, s_2, \cdots, s_d)$

Samples generated via NICE

(a) Model trained on MNIST

(b) Model trained on TFD

Samples generated via NICE

(c) Model trained on SVHN

(d) Model trained on CIFAR-10

Real-NVP: Non-volume preserving extension

- Forward mapping $z \mapsto x$:
 - $x_{\leq h} = z_{\leq h}$ (identity transformation)
 - $\mathbf{x}_{>h} = \mathbf{z}_{>h} \odot \exp(\alpha_{\theta}(\mathbf{z}_{\leq h})) + \mu_{\theta}(\mathbf{z}_{\leq h})$
 - $\alpha_{\theta}(\cdot)$ and $\mu_{\theta}(\cdot)$ are both neural networks with parameters θ , *h* input units, and d - h output units
 - \odot denotes elementwise product
- Inverse mapping $x \mapsto z$:
 - $\mathbf{z}_{\leq h} = \mathbf{x}_{\leq h}$ (identity transformation)
 - $\mathbf{z}_{>h} = (\mathbf{x}_{>h} \mu_{\theta}(\mathbf{x}_{\le h})) \odot \exp(-\alpha_{\theta}(\mathbf{x}_{\le h}))$

Real-NVP: Non-volume preserving extension

• Jacobian of forward mapping:

$$\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{z}} = \begin{pmatrix} l_h & \boldsymbol{0} \\ \frac{\partial \boldsymbol{x}_{>h}}{\partial \boldsymbol{z}_{\le h}} & \text{diag}(\exp(\alpha_\theta(\boldsymbol{z}_{\le h}))) \end{pmatrix}$$
$$\det\left(\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{z}}\right) = \prod_{i=h+1}^d \exp(\alpha_\theta(\boldsymbol{z}_{\le h})_i) = \exp\left(\sum_{i=h+1}^d \alpha_\theta(\boldsymbol{z}_{\le h})_i\right)$$

• Non-volume preserving transformation in general since determinant can be less than or greater than 1

Samples generated via Real-NVP

Continuous Autoregressive models as flow models

• Consider a Gaussian autoregressive model:

$$p(\mathbf{x}) = p(x_1) \prod_{i=2}^{d} p(x_i | \mathbf{x}_{< i})$$

• such that $p(x_i | \mathbf{x}_{< i}) = N(x_i | \mu_i(\mathbf{x}_{< i}), \exp(2\alpha_i(\mathbf{x}_{< i})))$. Here μ_i and α_i are neural networks for i > 1 and μ_1 and α_1 are constants

Continuous Autoregressive models as flow models

• Consider a Gaussian autoregressive model:

$$p(\mathbf{x}) = p(x_1) \prod_{i=2}^{d} p(x_i | \mathbf{x}_{< i})$$

- such that $p(x_i | \mathbf{x}_{< i}) = N(x_i | \mu_i(\mathbf{x}_{< i}), \exp(2\alpha_i(\mathbf{x}_{< i})))$. Here μ_i and α_i are neural networks for i > 1 and μ_1 and α_1 are constants
- Sampler for this model:
 - Sample $z_i \sim N(0,1)$ for $i = 1, \dots, d$
 - Let $x_1 = \exp(\alpha_1) z_1 + \mu_1$. Compute $\mu_2(x_1), \alpha_2(x_1)$
 - Let $x_2 = \exp(\alpha_2) z_2 + \mu_2$. Compute $\mu_3(x_1, x_2), \alpha_3(x_1, x_2)$
 - Let $x_3 = \exp(\alpha_3) z_3 + \mu_3$
- Flow interpretation: transforms samples from the standard Gaussian z to those generated from the model x via invertible transformations (parameterized by μ_i and α_i)

Masked Autoregressive Flow (MAF)

- Forward mapping $z \mapsto x$:
 - Let $x_1 = \exp(\alpha_1) z_1 + \mu_1$. Compute $\mu_2(x_1), \alpha_2(x_1)$
 - Let $x_2 = \exp(\alpha_2) z_2 + \mu_2$. Compute $\mu_3(x_1, x_2), \alpha_3(x_1, x_2)$
 - Let $x_3 = \exp(\alpha_3) z_3 + \mu_3$
- Sampling is sequential and slow (like autoregressive): O(d) time

Masked Autoregressive Flow (MAF)

- **Inverse** mapping $x \mapsto z$:
 - Compute all μ_i , α_i
 - Let $z_1 = (x_1 \mu_1) / \exp(\alpha_1)$ (scale and shift)
 - Let $z_2 = (x_2 \mu_2) / \exp(\alpha_2)$
 - Let $z_3 = (x_3 \mu_3) / \exp(\alpha_3) \dots$
- Jacobian is lower diagonal, hence efficient determinant computation
- Likelihood evaluation is easy and parallelizable

Inverse Autoregressive Flow (IAF)

- Forward mapping $z \mapsto x$ (parallel):
 - Sample $z_i \sim N(0,1)$ for $i = 1, \dots, d$
 - Compute all μ_i , α_i
 - Let $x_1 = \exp(\alpha_1) z_1 + \mu_1$
 - Let $x_2 = \exp(\alpha_2) z_2 + \mu_2$
 - Let $x_3 = \exp(\alpha_3) z_3 + \mu_3 \cdots$

Inverse Autoregressive Flow (IAF)

- **Inverse** mapping $x \mapsto z$ (sequential):
 - Let $z_1 = (x_1 \mu_1) / \exp(\alpha_1)$. Compute $\mu_2(z_1), \alpha_2(z_1)$
 - Let $z_2 = (x_2 \mu_2) / \exp(\alpha_2)$. Compute $\mu_3(z_1, z_2), \alpha_3(z_1, z_2)$
 - Let $z_3 = (x_3 \mu_3) / \exp(\alpha_3)$
- Fast to sample
- Slow to evaluate likelihoods of data points
- Note: Fast to evaluate likelihoods of a generated point

MAF and IAF

- IAF is an inverse of MAF
- Interchanging z and x in the inverse transformation of MAF gives the forward transformation of IAF
- Similarly, forward transformation of MAF is inverse transformation of IAF

MAF and IAF

- Computational tradeoffs
 - MAF: Fast likelihood evaluation, slow sampling
 - IAF: Fast sampling, slow likelihood evaluation
- MAF more suited for training based on MLE, density estimation
- IAF more suited for real-time generation

Summary of Normalizing flow models

- Transform simple distributions into more complex distributions via change of variables
- Jacobian of transformations should have tractable determinant for efficient learning and density estimation
- Computational tradeoffs in evaluating forward and inverse transformations

Thanks