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Latent Variable Models: Assumption

• Observable variables 𝒙 ∈ ℝ!
• Latent variables 𝒛 ∈ ℝ" (unobservable)

𝑝!#$# 𝒙 ='
𝒛
𝑝 𝒙, 𝒛

𝑜𝑟 = +𝑝 𝒙, 𝒛 𝑑𝒛
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Example: Mixture of Gaussians

• Mixture of Gaussians. Bayes net: 𝑧 → 𝒙
• 𝑧 = 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑧 𝛾&, ⋯ , 𝛾'
• 𝑝 𝒙 𝑧 = 𝑘 = 𝑁 𝒙 𝜇(, Σ(

• Clustering: The posterior 𝑝 𝑧 𝒙 identifies the mixture component
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Example: Variational Autoencoder

• A Mixture of an infinite number of Gaussians
• 𝒛 = 𝑁 𝒛 𝟎, 𝑰 , 𝒛 ∈ ℝ"
• 𝑝 𝒙 𝒛 = 𝑁 𝒙 𝜇) 𝒛 , Σ) 𝒛 where 𝜇), Σ) are neural networks
• Even though 𝑝 𝒙 𝒛 is simple, the marginal 𝑝 𝒙 is very 

complex/flexible 
• Hope that after training, 𝒛 will correspond to meaningful latent 

factors of variation (features)
• Unsupervised representation learning
• Features can be computed via 𝑝 𝒛 𝒙
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log 𝑝) 𝒙
= 𝐸*! 𝒛|𝒙 log 𝑝) 𝒙|𝒛 − 𝐷 𝑞- 𝒛|𝒙 ∥ 𝑝 𝒛

+ 𝐷 𝑞- 𝒛|𝒙 ∥ 𝑝) 𝒛|𝒙

• holds for ∀𝑞- 𝒛|𝒙 , distribution of 𝒛 parameterized by 𝜙 and 

dependent on 𝒙. E.g., 𝑞- 𝒛|𝒙 = 𝑁 𝒛 𝝁- 𝒙 , diag 𝝈-. 𝒙
• We want to jointly optimize over 𝜃 and 𝜙 to maximize the 

ELBO over a dataset 𝐷

The Evidence Lower bound
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• Variational inference requires that intractable posterior 
distributions be approximated by a class of known prob. dist.

𝐸*! 𝒛|𝒙 log 𝑝) 𝒙|𝒛 − 𝐷 𝑞- 𝒛|𝒙 ∥ 𝑝 𝒛
• We need to choose the computationally-feasible approximate 

posterior distribution 𝑞- 𝒛|𝒙
• We need efficient computation of

∇-𝐸*! 𝒛|𝒙 log 𝑝) 𝒙|𝒛

Variational Inference
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• Reparametrization

𝒛 = 𝑁 𝒛|𝝁, diag 𝝈𝟐 ⟺ 𝒛 = 𝝁 + diag 𝝈𝟐 𝝐, 𝝐~𝑁 𝟎, 𝑰
• Backpropagation with Monte Carlo

∇-𝐸𝒛~*! 𝒛|𝒙 𝑓)(𝒛) ⟺ 𝐸𝝐~2 𝝐 𝟎, 𝑰 ∇-𝑓) 𝝁- + diag 𝝈-. 𝝐

Stochastic backpropagation
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• Inference network: model that learns an inverse map(encoder) 
from observations to latent variables

• Using this, we can compute a set of global variational parameters 
𝜙 valid for infrence at both training and test time

• The simplest inference models: diagonal Gaussian densities

𝑞- 𝒛|𝒙 = 𝑁 𝒛 𝝁- 𝒙 , diag 𝝈-. 𝒙

Amortized Variational Inference
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ℒ 𝒙; 𝜃, 𝜙 = 𝐸*! 𝒛|𝒙 log 𝑝) 𝒙|𝒛 − 𝐷 𝑞- 𝒛|𝒙 ∥ 𝑝 𝒛 ELBO
1. Take a data point 𝒙′, map it to sample _𝒛~𝑞- 𝒛|𝒙′ (encoder)

• Sample _𝒛 from 𝑞- 𝒛|𝒙′ = 𝑁 𝒛 𝝁- 𝒙′ , diag 𝝈-. 𝒙′ , 
(encoder)

2. Reconstruct �̀� by sampling from 𝑝) 𝒙|_𝒛 (decoder or generator)
• �̀� = 𝐺) _𝒛
• The training objective ℒ 𝒙; 𝜃, 𝜙

• Reconstruction error
• Regularizer

VAE: Autoencoder perspective



Deep Generative Models    |    mjgim@nims.re.kr |    NIMS & AJOU University

• Sample minibatch of 𝑛 training points 𝒙 ! , 𝒙 " , ⋯ , 𝒙 # from 𝑝$%&%
• Obtain 𝑛 prob. distributions 𝑞! 𝒛|𝒙 " using inference network
• Sample 𝑛 latent feature points 𝒛 ! , 𝒛 " , ⋯ , 𝒛 # from 𝑞- 𝒛|𝒙 3 resp.
• Update the generator parameters 𝜙, 𝜃 by stochastic gradient descent

∇'ℓ 𝜃, 𝜙 =
1
𝑛 ∇',

()!

#

𝒙 ( − 𝐺* 𝒛 (
"
"
− 𝐷 𝑞! 𝒛|𝒙 " ∥ 𝑝 𝒛

∇*ℓ 𝜃, 𝜙 =
1
𝑛 ∇*,

()!

#

𝒙 ( − 𝐺* 𝒛 (
"
"

• Repeat for fixed number of epochs

The VAE training algorithm
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• Combine simple models to get a more flexible one (e.g., mixture 
of Gaussians)

• Directed model permits ancestral sampling (efficient generation): 
𝒛~𝑝 𝒛 , 𝒙~𝑝) 𝒙 𝒛

• However, log-likelihood is generally intractable. I.e., learning is 
difficult

• Joint learning of a model 𝜃 and an amortized inference 
component 𝜙 to achieve tractability via ELBO optimization

• Latent representations for any 𝒙 can be inferred via 𝑞- 𝒛|𝒙

Summary of Latent Variable Models
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• Model families:
• Autoregressive models: 𝑝) 𝒙 = ∏34&

! 𝑝) 𝑥3 𝒙5𝒊
• Latent variable model: 𝑝) 𝒙 = ∫𝑝) 𝒙, 𝒛 𝑑𝒛

• Autoregressive models provide tractable likelihoods but no direct 
mechanism for learning features

• Variational autoencoders can learn feature representations
(via latent variables 𝑞- 𝒛|𝒙 ) but have intractable marginal 
likelihoods

• Key question: Can we design a latent variable model with 
tractable likelihoods?

Recap of likelihood-based learning
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Normalizing flow models

• Consider a directed, latent variable model over observed 
variables 𝑋 and latent variables 𝑍

• In a normalizing flow model, the mapping between 𝑍 and 𝑋, 
given by 𝒇): ℝ! → ℝ!, is deterministic and invertible such that 
𝑋 = 𝒇) 𝑍 and 𝑍 = 𝒇)

7& 𝑋
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Continuous random variables (recall)

• If 𝑋 is a continuous random variable, we can usually represent it 
using its probability density function 𝑝8: ℝ → ℝ9

• However, we cannot represent this function as a table anymore
• Typically consider parameterized densities: 
• Gaussian: 𝑋 = 𝑁 𝑋 𝜇, 𝜎 if 𝑝8 𝑥 = &

: .;
𝑒7 <7= "/.:"

• Uniform: 𝑋 = 𝑈 𝑋 𝑎, 𝑏 if 𝑝8 𝑥 = &
?7#

1[#A<A?]

• If 𝑋 is a continuous random vector, we can usually represent it 
using its joint probability density function:

• Gaussian: 𝑝8 𝒙 = &
.; #|C|

exp − &
.
𝒙 − 𝝁 DΣ7& 𝒙 − 𝝁
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• Change of variables(1D case)
• If 𝑋 = 𝑓 𝑍 and 𝑓 ⋅ is monotone with inverse 𝑍 = 𝑓7& 𝑋 , 

then
𝑝8 𝑥 = 𝑝E 𝑓7& 𝑥 𝑓7& ′ 𝑥

• Note that the ”shape” of 𝑝8 𝑥 is different (more complex) from 
that of the prior 𝑝E 𝑧

Change of variables formula
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• Change of variables(1D case):
• If 𝑋 = 𝑓 𝑍 and 𝑓 ⋅ is monotone with inverse 𝑍 = 𝑓7& 𝑋 , 

then
𝑝8 𝑥 = 𝑝E 𝑓7& 𝑥 𝑓7& ′ 𝑥

• Proof sketch: Assume 𝑓 ⋅ is monotonically increasing
𝐹8 𝑥 = 𝑝 𝑋 ≤ 𝑥 = 𝑝 𝑓 𝑍 ≤ 𝑥 = 𝑝 𝑍 ≤ 𝑓7& 𝑥 = 𝐹E 𝑓7& 𝑥
• Taking derivatives on both sides:

𝑝8 𝑥 =
𝑑𝐹8 𝑥
𝑑𝑥

=
𝑑𝐹E 𝑓7& 𝑥

𝑑𝑥
= 𝑝E 𝑓7& 𝑥 𝑓7& F 𝑥

• Recall from basic calculus that 𝑓7& F 𝑥 = s& G$ G%& <
• So, letting 𝑧 = 𝑓7& 𝑥 we can also write

𝑝8 𝑥 = 𝑝E 𝑧
1

𝑓F 𝑧

Change of variables formula
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• Let 𝑍 be a uniform random vector in 0,1 !

• Let 𝑋 = 𝐴𝑍 for a square invertible matrix 𝐴, with inverse 𝐴7&. 
How is 𝑋 distributed?

• Geometrically, the matrix 𝐴 maps the unit hypercube 0,1 ! to a 
parallelotope

• Hypercube and parallelotope are generalizations of square/cube 
and parallelogram/parallelopiped to higher dimensions

• The matrix 𝐴 = 𝑎 𝑐
𝑏 𝑑 maps a unit square to a parallelogram

Geometry: Determinants and volumes
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• The volume of the parallelotope is equal to the absolute value of 
the determinant of the matrix 𝐴

det 𝐴 = det 𝑎 𝑐
𝑏 𝑑 = 𝑎𝑑 − 𝑏𝑐

• Let 𝑋 = 𝐴𝑍 for a square invertible matrix 𝐴, with inverse 𝐴7&
• 𝑋 is uniformly distributed over the parallelotope of area det 𝐴
• Hence, we have

𝑝8 𝒙 = ⁄𝑝E 𝐴7&𝒙 |det 𝐴 | = 𝑝E 𝒛 det 𝐴7&
• Note similarity with 1D case formula

Geometry: Determinants and volumes
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Generalized change of variables 

• For linear transformations specified via 𝐴, change in volume is 
given by the determinant of 𝐴

• For non-linear transformations 𝒇(⋅), the linearized change in 
volume is given by the determinant of the Jacobian of 𝒇(⋅)

• Change of variables (General case): The mapping between 𝑍 and 
𝑋, given by 𝒇:ℝ! → ℝ!, is invertible such that 𝑋 = 𝒇 𝑍 and

𝑍 = 𝒇7& 𝑋

𝑝8 𝒙 = 𝑝E 𝒇7& 𝒙 det
𝜕𝒇7& 𝒙
𝜕𝒙

= 𝑝E 𝒛 det
𝜕𝒇 𝒛
𝜕𝒛

7&

• Generalizes the 1D case 𝑝8 𝑥 = 𝑝E 𝑓7& 𝑥 𝑓7& F 𝑥
• Unlike VAEs, 𝒙, 𝒛 need to be continuous and have the same 

dimension
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Two-Dimensional Example

• Let 𝑍 = 𝑍&, 𝑍. D be continuous random vector with joint 
density 𝑝E

• Let 𝒖:ℝ. → ℝ. be an invertible transformation denoted 𝒖 =
(𝑢&, 𝑢.) and let 𝒗 = (𝑣&, 𝑣.) be its inverse transformation

• Let 𝑋& = 𝑢& 𝑍&, 𝑍. and 𝑋. = 𝑢. 𝑍&, 𝑍.
• Then, 𝑍& = 𝑣& 𝑋&, 𝑋. and 𝑍. = 𝑣. 𝑋&, 𝑋.

𝑝# 𝑥$, 𝑥% = 𝑝& 𝑣$ 𝑥$, 𝑥% , 𝑣% 𝑥$, 𝑥% det

𝜕𝑣$ 𝑥$, 𝑥%
𝜕𝑥$

𝜕𝑣$ 𝑥$, 𝑥%
𝜕𝑥%

𝜕𝑣% 𝑥$, 𝑥%
𝜕𝑥$

𝜕𝑣% 𝑥$, 𝑥%
𝜕𝑥%

= 𝑝& 𝑧$, 𝑧% det

𝜕𝑢$ 𝑧$, 𝑧%
𝜕𝑧$

𝜕𝑢$ 𝑧$, 𝑧%
𝜕𝑧%

𝜕𝑢% 𝑧$, 𝑧%
𝜕𝑧$

𝜕𝑢% 𝑧$, 𝑧%
𝜕𝑧%

'$
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Normalizing flow models

• Consider a directed, latent variable model over observed 
variables 𝑋 and latent variables 𝑍

• In a normalizing flow model, the mapping between 𝑍 and 𝑋, 
given by 𝒇): ℝ! → ℝ!, is deterministic and invertible such that 
𝑋 = 𝒇) 𝑍 and 𝑍 = 𝒇)

7& 𝑋
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Normalizing flow models

• Using change of variables, the marginal likelihood is given by

𝑝8 𝒙; 𝜃 = 𝑝E 𝒇)
7& 𝒙 det

𝜕𝒇)7& 𝒙
𝜕𝒙

= 𝑝E 𝒛 det
𝜕𝒇) 𝒛
𝜕𝒛

7&

• Note: 𝒙, 𝒛 need to be continuous and have the same dimension
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• A normalizing flow describes the transformation of a 
probability density through a sequence of invertible 
mappings

• By repeatedly applying the rule for change of variables, the initial 
density ‘flows’ through the sequence of invertible mappings

• Flexible, arbitrarily complex and scalable

Normalizing Flows
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A Flow of Transformations

• Normalizing: Change of variables gives a normalized density 
after applying an invertible transformation

• Flow: Invertible transformations can be composed with each 
other

𝒇) 𝒛H ≔ 𝒇' ∘ 𝒇'7& ∘ ⋯ ∘ 𝒇& 𝒛H = 𝒛'
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A Flow of Transformations

𝒇) 𝒛H ≔ 𝒇' ∘ 𝒇'7& ∘ ⋯ ∘ 𝒇& 𝒛H = 𝒛'

• Start with a simple distribution for 𝒛H (e.g., Gaussian)
• Apply a sequence of 𝐾 invertible transformations to finally 

obtain 𝒙 = 𝒛'
𝒇)7& 𝒙 = 𝒇&7& ∘ 𝒇.7& ∘ ⋯ ∘ 𝒇'7& 𝒙
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A Flow of Transformations

𝒇) 𝒛H ≔ 𝒇' ∘ 𝒇'7& ∘ ⋯ ∘ 𝒇& 𝒛H = 𝒛' = 𝒙
𝒇)7& 𝒙 = 𝒇&7& ∘ 𝒇.7& ∘ ⋯ ∘ 𝒇'7& 𝒙

• The marginal likelihood 𝑝8 𝒙 is given by

𝑝8 𝒙; 𝜃 = 𝑝E 𝒇)7& 𝒙 det
𝜕𝒇)7& 𝒙
𝜕𝒙

= 𝑝E 𝒛 det
𝜕𝒇) 𝒛
𝜕𝒛

7&

= 𝑝E 𝒇)7& 𝒙 �
(4&

'

det
𝜕𝒇(7& 𝒙(
𝜕𝒙(
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Learning and Inference

• Learning via maximum likelihood over the dataset 𝐷

max
)
log 𝑝8 𝐷; 𝜃 = '

𝒙∈J

log 𝑝E 𝒇)7& 𝒙 + log det
𝜕𝒇)

7& 𝒙
𝜕𝒙

• Exact likelihood evaluation via inverse transformation 𝒙 ⟼ 𝒛 and 
change of variables formula

• Sampling via forward transformation 𝒛 ⟼ 𝒙
𝒛~𝒑E 𝒛 , 𝒙 = 𝒇)(𝒛)

• Latent representations inferred via inverse transformation (no 
inference network required): 𝒛 = 𝒇)

7𝟏(𝒙)
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Planar flows (Rezende & Mohanmed, 2016)

• Effect of normalizing flow on two distributions
• 10 planar transformations can transform simple distributions into 

a more complex one
Variational Inference with Normalizing Flows

and involve matrix inverses that can be numerically unsta-
ble. We therefore require normalizing flows that allow for
low-cost computation of the determinant, or where the Ja-
cobian is not needed at all.

4.1. Invertible Linear-time Transformations

We consider a family of transformations of the form:

f(z) = z+ uh(w>z+ b), (10)

where � = {w 2 IRD
,u 2 IRD

, b 2 IR} are free pa-
rameters and h(·) is a smooth element-wise non-linearity,
with derivative h

0(·). For this mapping we can compute
the logdet-Jacobian term in O(D) time (using the matrix
determinant lemma):

 (z) = h
0(w>z+ b)w (11)���det @f

@z

��� = | det(I+ u (z)>)| = |1 + u>
 (z)|. (12)

From (7) we conclude that the density qK(z) obtained by
transforming an arbitrary initial density q0(z) through the
sequence of maps fk of the form (10) is implicitly given
by:

zK = fK � fK�1 � . . . � f1(z)

ln qK(zK) = ln q0(z)�
KX

k=1

ln |1 + u>
k  k(zk�1)|. (13)

The flow defined by the transformation (13) modifies the
initial density q0 by applying a series of contractions and
expansions in the direction perpendicular to the hyperplane
w>z+b = 0, hence we refer to these maps as planar flows.

As an alternative, we can consider a family of transforma-
tions that modify an initial density q0 around a reference
point z0. The transformation family is:

f(z) = z+ �h(↵, r)(z� z0), (14)
����det

@f

@z

���� = [1 + �h(↵, r)]d�1 [1 + �h(↵, r) + �h
0(↵, r)r)] ,

where r = |z � z0|, h(↵, r) = 1/(↵ + r), and the param-
eters of the map are � = {z0 2 IRD

,↵ 2 IR+
,� 2 IR}.

This family also allows for linear-time computation of the
determinant. It applies radial contractions and expansions
around the reference point and are thus referred to as radial
flows. We show the effect of expansions and contractions
on a uniform and Gaussian initial density using the flows
(10) and (14) in figure 1. This visualization shows that we
can transform a spherical Gaussian distribution into a bi-
modal distribution by applying two successive transforma-
tions.

Not all functions of the form (10) or (14) will be invert-
ible. We discuss the conditions for invertibility and how to
satisfy them in a numerically stable way in the appendix.

K=1 K=2
Planar Radial

q0 K=1 K=2K=10 K=10

Un
it 

Ga
us

sia
n

Un
ifo

rm

Figure 1. Effect of normalizing flow on two distributions.

Inference network Generative model

Figure 2. Inference and generative models. Left: Inference net-
work maps the observations to the parameters of the flow; Right:
generative model which receives the posterior samples from the
inference network during training time. Round containers repre-
sent layers of stochastic variables whereas square containers rep-
resent deterministic layers.

4.2. Flow-Based Free Energy Bound

If we parameterize the approximate posterior distribution
with a flow of length K, q�(z|x) := qK(zK), the free en-
ergy (3) can be written as an expectation over the initial
distribution q0(z):

F(x) = Eq�(z|x)[log q�(z|x)� log p(x, z)]

= Eq0(z0) [ln qK(zK)� log p(x, zK)]

= Eq0(z0) [ln q0(z0)]� Eq0(z0) [log p(x, zK)]

� Eq0(z0)

"
KX

k=1

ln |1 + u>
k  k(zk�1)|

#
. (15)

Normalizing flows and this free energy bound can be used
with any variational optimization scheme, including gener-
alized variational EM. For amortized variational inference,
we construct an inference model using a deep neural net-
work to build a mapping from the observations x to the
parameters of the initial density q0 = N (µ,�) (µ 2 IRD

and � 2 IRD) as well as the parameters of the flow �.

4.3. Algorithm Summary and Complexity

The resulting algorithm is a simple modification of the
amortized inference algorithm for DLGMs described by
(Kingma & Welling, 2014; Rezende et al., 2014), which
we summarize in algorithm 1. By using an inference net-
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Planar flows (Rezende & Mohanmed, 2016)

• Planar flow
𝒇 𝒛 = 𝒛 + 𝒖ℎ 𝒘D𝒛 + 𝑏

• parametrized by 𝜃 = 𝒘,𝒖, 𝑏 where ℎ ⋅ is a nonlinear function
• Absolute value of the determinant of the Jacobian is given by

det
𝜕𝒇 𝒛
𝜕𝒛

= det 𝐼 + ℎF 𝒘D𝒛 + 𝑏 𝒖𝒘D

= 1 + ℎF 𝒘D𝒛 + 𝑏 𝒖D𝒘 (matrix determinant lemma)

• Need to restrict parameters and non-linearity for the mapping to 
be invertible.
• For example, ℎ = tanh(⋅) and ℎF 𝒘D𝒛 + 𝑏 𝒖D𝒘 ≥ −1
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Planar flows (Rezende & Mohanmed, 2016)

• A family of transformations of Planar flows
𝒇( 𝒛 = 𝒛 + 𝒖(ℎ 𝒘(

D𝒛 + 𝑏(
• parametrized by 𝒘(, 𝒖(, 𝑏( where ℎ ⋅ is a nonlinear function
• Let 𝒇) 𝒛H ≔ 𝒇' ∘ ⋯𝒇. ∘ 𝒇& 𝒛H = 𝒛' = 𝒙
• The log-likelihood 𝑝8 𝒙; 𝜃 is given by

log 𝑝8 𝒙; 𝜃 = log 𝑝E 𝒛 −'
(4&

'

log 1 + ℎF 𝒘(
D𝒛𝒌7𝟏 + 𝑏 𝒖(D𝒘(
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Planar flows (Rezende & Mohanmed, 2016)Variational Inference with Normalizing Flows

Table 1. Test energy functions.
Potential U(z)
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⇣
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0.35
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4: � ln

✓
e
� 1

2

hz2�w1(z)
0.4

i2
+ e

� 1
2

hz2�w1(z)+w3(z)
0.35
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with w1(z) = sin
�
2⇡z1

4

�
, w2(z) = 3e

� 1
2

h
(z1�1)

0.6

i2
,

w3(z) = 3�
�z1�1

0.3

�
and �(x) = 1/(1 + e�x).

Carlo estimate is computed using a single sample of the
latent variables per data-point per parameter update.

A simple annealed version of the free energy is used since
this was found to provide better results. The modified
bound is:

zK = fK � fK�1 � . . . � f1(z)

F
�t(x) = Eq0(z0)

⇥
ln p

K(zK)� log p(x, zK)
⇤

= Eq0(z0) [ln q0(z0)]� �tEq0(z0) [log p(x, zK)]

� Eq0(z0)

"
KX

k=1

ln |1 + u
T
k  k(zk�1)|

#
(20)

where �t 2 [0, 1] is an inverse temperature that follows a
schedule �t = min(1, 0.01+ t/10000), going from 0.01 to
1 after 10000 iterations.

The deep neural networks that form the conditional prob-
ability between random variables consist of determinis-
tic layers with 400 hidden units using the Maxout non-
linearity on windows of 4 variables (Goodfellow et al.,
2013) . Briefly, the Maxout non-linearity with window-
size � takes an input vector x 2 IRd and computes:
Maxout(x)k = maxi2{�k,�(k+1)} xi for k = 0 . . . d/�.

We use mini-batches of 100 data points and RMSprop
optimization (with learning rate = 1 ⇥ 10�5 and
momentum = 0.9) (Kingma & Welling, 2014; Rezende
et al., 2014). Results were collected after 500, 000 parame-
ter updates. Each experiment was repeated 100 times with
different random seeds and we report the averaged scores
and standard errors. The true marginal likelihood is esti-
mated by importance sampling using 200 samples from the
inference network as in (Rezende et al., 2014, App. E).

6.1. Representative Power of Normalizing Flows

To provide an insight into the representative power of den-
sity approximations based on normalizing flows, we pa-
rameterize a set of unnormalized 2D densities p(z) /

exp[�U(z)] which are listed in table 1.

In figure 3(a) we show the true distribution for four cases,
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(d) Comparison of KL-divergences.

Figure 3. Approximating four non-Gaussian 2D distributions.
The images represent densities for each energy function in table
1 in the range (�4, 4)2. (a) True posterior; (b) Approx poste-
rior using the normalizing flow (13); (c) Approx posterior using
NICE (19); (d) Summary results comparing KL-divergences be-
tween the true and approximated densities for the first 3 cases.

which show distributions that have characteristics such as
multi-modality and periodicity that cannot be captured with
typically-used posterior approximations.

Figure 3(b) shows the performance of normalizing flow
approximations for these densities using flow lengths of
2, 8 and 32 transformations. The non-linearity h(z) =
tanh(z) in equation (10) was used for the mapping and
the initial distribution was a diagonal Gaussian, q0(z) =
N (z|µ,�

2I). We see a substantial improvement in the ap-
proximation quality as we increase the flow length. Fig-
ure 3(c) shows the same approximation using the volume-
preserving transformation used in NICE (Dinh et al., 2014)
for the same number of transformations. We show sum-
mary statistics for the planar flow (13), and NICE (18) for
random orthogonal matrices and with random permutation
matrices in 3(d). We found that NICE and the planar flow
(13) may achieve the same asymptotic performance as we
grow the flow-length, but the planar flow (13) requires far
fewer parameters. Presumably because all parameters of
the flow (13) are learned, in contrast to NICE which re-
quires an extra mechanism for mixing the components that
is not learned but randomly initialized. We did not observe
a substantial difference between using random orthogonal
matrices or random permutation matrices in NICE.

6.2. MNIST and CIFAR-10 Images

The MNIST digit dataset (LeCun & Cortes, 1998) contains
60,000 training and 10,000 test images of ten handwritten

Approximating four non-
Gaussian 2D distributions

Summary results comparing 
KL-divergences between the 
true and approximated 
densities for the first 3 cases
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Desiderata for flow models 

• Simple prior 𝑝E 𝒛 that allows for efficient sampling and 
tractable likelihood evaluation. E.g., isotropic Gaussian

• Invertible transformations with tractable evaluation:
• Likelihood evaluation requires efficient evaluation of 𝒙 ⟼ 𝒛

mapping
• Sampling requires efficient evaluation of 𝒛 ⟼ 𝒙 mapping
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Desiderata for flow models 

• Computing likelihoods also requires the evaluation of 
determinants 𝑑×𝑑 of Jacobian matrices

• Computing the determinant for a 𝑑×𝑑 matrix is O 𝑑M
• Key idea: Choose transformations so that the resulting 

Jacobian matrix has special structure
• For example, the determinant of a triangular matrix is the 

product of the diagonal entries, i.e., an O 𝑑 operation
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Triangular Jacobian

𝒙 = 𝑥&, 𝑥., ⋯ , 𝑥! D = 𝒇 𝒛 = 𝑓& 𝒛 , 𝑓. 𝒛 ,⋯ , 𝑓! 𝒛 D

𝜕𝒇
𝜕𝒛

=

𝜕𝑓&
𝜕𝑧&

⋯
𝜕𝑓&
𝜕𝑧!

⋮ ⋱ ⋮
𝜕𝑓!
𝜕𝑧&

⋯
𝜕𝑓!
𝜕𝑧!

• If 𝑥3 = 𝑓3 𝒛 only depends on 𝒛A3, then

𝜕𝒇
𝜕𝒛

=

𝜕𝑓&
𝜕𝑧&

⋯ 0

⋮ ⋱ ⋮
𝜕𝑓!
𝜕𝑧&

⋯
𝜕𝑓!
𝜕𝑧!

• has lower triangular structure
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Recap of normalizing flow models

• Transform simple to complex distributions via sequence of 
invertible transformations

• Directed latent variable models with marginal likelihood given by 
the change of variables formula

• Triangular Jacobian permits efficient evaluation of log-likelihood
• Examples
• Invertible transformations with diagonal Jacobians (NICE, 

Real-NVP)
• Autoregressive Models as Normalizing Flow Models
• Invertible CNNs (MintNet)
• Gaussianization flows
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Designing invertible transformations 

• Nonlinear Independent Components Estimation (Dinh et al., 2014) 
composes two kinds of invertible transformations: additive 
coupling layers and rescaling layers

• Real-NVP (Dinh et al., 2017)
• Inverse Autoregressive Flow (Kingma et al., 2016)
• Masked Autoregressive Flow (Papamakarios et al., 2017)
• I-resnet (Behrmann et al, 2018)
• Glow (Kingma et al, 2018)
• MintNet (Song et al., 2019)
• …
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NICE - Additive coupling layers

• Partition the variables 𝒛 into two disjoint subsets, say 𝒛A" and 
𝒛N" for any 1 ≤ ℎ < 𝑑

• Forward mapping 𝒛 ⟼ 𝒙:
• 𝒙A" = 𝒛A" (identity transformation)
• 𝒙N" = 𝒛N" +𝑚) 𝒛A" (𝑚) ⋅ is a neural network with 

parameters 𝜃, ℎ input units, and 𝑑 − ℎ output units)
• Inverse mapping 𝒙 ⟼ 𝒛:
• 𝒛A" = 𝒙A"(identity transformation)
• 𝒛N" = 𝒙N" −𝑚) 𝒙A"
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NICE - Additive coupling layers

• Jacobian of forward mapping:

𝜕𝒙
𝜕𝒛

=
𝐼" 𝟎

𝜕𝒙N"
𝜕𝒛A"

𝐼!7"

det
𝜕𝒙
𝜕𝒛

= 1
• Volume preserving transformation since determinant is 1
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NICE – Rescaling layers

• Additive coupling layers are composed together (with arbitrary 
partitions of variables in each layer)

• Final layer of NICE applies a rescaling transformation
• Forward mapping 𝒛 ⟼ 𝒙 :

𝑥3 = 𝑠3𝑧3
• where 𝑠3 > 0 is the scaling factor for the ith dimension

• Inverse mapping 𝒙 ⟼ 𝒛:
𝑧3 =

𝑥3
𝑠3

• Jacobian of forward mapping
diag(𝑠&, 𝑠., ⋯ , 𝑠!)
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Samples generated via NICE

Accepted as a workshop contribution at ICLR 2015

(a) Model trained on MNIST (b) Model trained on TFD

(c) Model trained on SVHN (d) Model trained on CIFAR-10

Figure 5: Unbiased samples from a trained NICE model. We sample h ⇠ pH(h) and we output
x = f

�1(h).

8
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Samples generated via NICE
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Real-NVP: Non-volume preserving extension

• Forward mapping 𝒛 ⟼ 𝒙:
• 𝒙A" = 𝒛A" (identity transformation)
• 𝒙N" = 𝒛N"⊙exp 𝛼) 𝒛A" + 𝜇) 𝒛A"
• 𝛼) ⋅ and 𝜇) ⋅ are both neural networks with parameters 𝜃, 
ℎ input units, and 𝑑 − ℎ output units

• ⊙ denotes elementwise product
• Inverse mapping 𝒙 ⟼ 𝒛:
• 𝒛A" = 𝒙A" (identity transformation)
• 𝒛N" = 𝒙N" − 𝜇) 𝒙A" ⊙exp −𝛼) 𝒙A"
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Real-NVP: Non-volume preserving extension

• Jacobian of forward mapping:

𝜕𝒙
𝜕𝒛

=
𝐼" 𝟎

𝜕𝒙N"
𝜕𝒛A"

diag exp 𝛼) 𝒛A"

det
𝜕𝒙
𝜕𝒛

= �
34"9&

!

exp 𝛼) 𝒛A" 3 = exp '
34"9&

!

𝛼) 𝒛A" 3

• Non-volume preserving transformation in general since 
determinant can be less than or greater than 1
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Samples generated via Real-NVP
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Continuous Autoregressive models as flow models

• Consider a Gaussian autoregressive model:

𝑝 𝒙 = 𝑝 𝑥& �
34.

!

𝑝(𝑥3|𝒙53)

• such that 𝑝 𝑥3 𝒙53 = 𝑁 𝑥3|𝜇3 𝒙53 , exp 2𝛼3 𝒙53 . Here 𝜇3 and 
𝛼3 are neural networks for 𝑖 > 1 and 𝜇& and 𝛼& are constants
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Continuous Autoregressive models as flow models

• Consider a Gaussian autoregressive model:

𝑝 𝒙 = 𝑝 𝑥& �
34.

!

𝑝(𝑥3|𝒙53)

• such that 𝑝 𝑥3 𝒙53 = 𝑁 𝑥3|𝜇3 𝒙53 , exp 2𝛼3 𝒙53 . Here 𝜇3 and 
𝛼3 are neural networks for 𝑖 > 1 and 𝜇& and 𝛼& are constants

• Sampler for this model:
• Sample 𝑧3~𝑁(0,1) for 𝑖 = 1,⋯ , 𝑑
• Let 𝑥& = exp(𝛼&) 𝑧& + 𝜇&. Compute 𝜇. 𝑥& , 𝛼. 𝑥&
• Let 𝑥. = exp(𝛼.) 𝑧. + 𝜇.. Compute 𝜇M 𝑥&, 𝑥. , 𝛼M 𝑥&, 𝑥.
• Let 𝑥M = exp(𝛼M) 𝑧M + 𝜇M. ⋯

• Flow interpretation: transforms samples from the standard 
Gaussian 𝒛 to those generated from the model 𝒙 via invertible 
transformations (parameterized by 𝜇3 and 𝛼3)
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Masked Autoregressive Flow (MAF)

• Forward mapping 𝒛 ⟼ 𝒙:
• Let 𝑥& = exp(𝛼&) 𝑧& + 𝜇&. Compute 𝜇. 𝑥& , 𝛼. 𝑥&
• Let 𝑥. = exp(𝛼.) 𝑧. + 𝜇.. Compute 𝜇M 𝑥&, 𝑥. , 𝛼M 𝑥&, 𝑥.
• Let 𝑥M = exp(𝛼M) 𝑧M + 𝜇M. ⋯

• Sampling is sequential and slow (like autoregressive): 𝑂 𝑑 time
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Masked Autoregressive Flow (MAF)

• Inverse mapping 𝒙 ⟼ 𝒛:
• Compute all 𝜇3, 𝛼3
• Let 𝑧& = 𝑥& − 𝜇& / exp(𝛼&) (scale and shift)
• Let 𝑧. = 𝑥. − 𝜇. / exp(𝛼.)
• Let 𝑧M = 𝑥M − 𝜇M / exp(𝛼M) . ⋯

• Jacobian is lower diagonal, hence efficient determinant 
computation

• Likelihood evaluation is easy and parallelizable
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Inverse Autoregressive Flow (IAF)

• Forward mapping 𝒛 ⟼ 𝒙 (parallel):
• Sample 𝑧3~𝑁(0,1) for 𝑖 = 1,⋯ , 𝑑
• Compute all 𝜇3, 𝛼3
• Let 𝑥& = exp(𝛼&) 𝑧& + 𝜇&
• Let 𝑥. = exp(𝛼.) 𝑧. + 𝜇.
• Let 𝑥M = exp(𝛼M) 𝑧M + 𝜇M ⋯
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Inverse Autoregressive Flow (IAF)

• Inverse mapping 𝒙 ⟼ 𝒛 (sequential):
• Let 𝑧& = 𝑥& − 𝜇& / exp(𝛼&). Compute 𝜇. 𝑧& , 𝛼. 𝑧&
• Let 𝑧. = 𝑥. − 𝜇. / exp(𝛼.). Compute 𝜇M 𝑧&, 𝑧. , 𝛼M 𝑧&, 𝑧.
• Let 𝑧M = 𝑥M − 𝜇M / exp(𝛼M). ⋯

• Fast to sample
• Slow to evaluate likelihoods of data points
• Note: Fast to evaluate likelihoods of a generated point
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MAF and IAF

Inverse pass of MAF        vs.        Forward pass of IAF

• IAF is an inverse of MAF
• Interchanging 𝒛 and 𝒙 in the inverse transformation of MAF gives 

the forward transformation of IAF
• Similarly, forward transformation of MAF is inverse 

transformation of IAF
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MAF and IAF

Inverse pass of MAF        vs.        Forward pass of IAF

• Computational tradeoffs
• MAF: Fast likelihood evaluation, slow sampling
• IAF: Fast sampling, slow likelihood evaluation

• MAF more suited for training based on MLE, density estimation
• IAF more suited for real-time generation
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Summary of Normalizing flow models

• Transform simple distributions into more complex distributions 
via change of variables

• Jacobian of transformations should have tractable determinant 
for efficient learning and density estimation

• Computational tradeoffs in evaluating forward and inverse 
transformations
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